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First-order kinetic phase transitions in simple reactions on solid surfaces:
Nucleation and growth of the stable phase
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First-order kinetic phase transitions connected with bistability and resulting in chemical waves are ex-
perimentally observed in rapid surface reactions such as CO or hydrogen oxidation on transition metals.
If in this case the system exhibiting bistability is initially in the metastable state, the transition to the
stable state occurs via nucleation and growth of the stable kinetic phase. We estimate the rate of this
process, assuming that nucleation results from fluctuations in the arrangement of adsorbed particles due

to surface diffusion.

PACS number(s): 05.40.+j, 64.10.+h, 68.10.Jy, 82.65.Jv

In analogy to real thermodynamic phase transitions,
the term “kinetic phase transition” physically means that
the kinetic behavior of the system under consideration
changes qualitatively when a control parameter (e.g.,
temperature or pressure) passes through a critical point.
Mathematically, this means that a bifurcation occurs at
this point. If the change in the reaction rate is stepwise
at the critical point, the kinetic phase transition belongs
to the first-order class. If the change is softer, the transi-
tion is continuous.

The first-order kinetic phase transitions connected with
bistability and resulting in chemical waves are experimen-
tally observed in rapid surface reactions such as CO or
hydrogen oxidation on transition metals under UHV con-
ditions, and at atmospheric pressure as well [1-3]. Con-
tinuous kinetic phase transitions in heterogeneous reac-
tions have been predicted for system with a high reaction
rate, provided that the adsorbed species are immobile (see
the reviews [2,3]). In real systems, however, surface
diffusion is usually rapid compared to reaction steps.
Perhaps this is the main reason why continuous kinetic
phase transitions have not been observed so far.

The first-order kinetic phase transitions can be de-
scribed by common, mean-field kinetic equations. For
example, the well established mechanism of CO oxidation
on Pt(111), at high-vacuum conditions, contains reversi-
ble monomolecular CO adsorption, irreversible oxygen
adsorption, and CO+O reaction between adsorbed
species to form product CO, molecules which desorb rap-
idly. The corresponding mean-field equations are as fol-
lows [1]:

dOco/dt =k Poo[1—(0c0/0%0)1—k20c0
— k360060 , (1
dO/dt =k, Po, [1— O c0/Ok0—O6/05 1~ k300000 ,
(2)

where 65 =0.5 and ©63=0.25 are the saturation cover-
ages. Equation (1) takes into account that the coverage
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dependence of the CO sticking coefficient is weak up to
saturation (which is suggested to be due to a precursor
mechanism of adsorption). The model also takes into ac-
count that preadsorbed CO inhibits dissociative adsorp-
tion of oxygen and that no such site-blocking effect is ex-
erted by adsorbed oxygen for incoming CO molecules.

At steady-state conditions, one can express O via O g
by employing Eq. (2) and then solve Eq. (1) for ©¢. This
equation has one or three solutions for the CO coverage
(Fig. 1). In the latter case, the intermediate solution
(with respect to absolute coverage) is unstable and the
other two solutions are stable. Thus, if the temperature is
not too high, the model presented by Egs. (1) and (2) pre-
dicts a bistable reaction regime and hysteresis for
Plo SPco SPY, (P, and P are the critical CO pres-
sures at a given temperature and oxygen pressure). In this
regime, one stable solution corresponds to the surface
covered predominantly by oxygen (the reaction rate is
high) and the other to the surface covered predominantly
by CO (the reaction rate is low). These solutions are
stable if one employs the mean-field approximation and
does not take into account fluctuations of adsorbate cov-
erages due to surface diffusion.

When considering the effect of surface diffusion, a new
important parameter P&, (PLy <P&, <P2o) should be
introduced, corresponding to equistability of the different
kinetic phases. In the bistable region, the oxygen-
domination regime is absolutely stable for Poo < P& and
metastable at P%o < Pco <P2,. The CO-domination re-
gime is metastable at Plo <P.o <P&, and absolutely
stable at Pco > P&,. Physically, the parameter P& is
directly connected with calculating the velocity of chemi-
cal waves. If, for example, at a given value of Pg
(PLo <Pco <P2y), one part of the surface, initially
covered primarily by CO, and the other part, correspond-
ing to the “reactive” state, are separated by a linear inter-
face, then with increasing time the interface will move
from the low-rate region to the high-rate region, or in the
opposite direction, due to diffusion and reaction (this is a
chemical wave). In the former case, the velocity of the
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FIG. 1. (a) CO coverage and (b) reaction rate (monolayer per
second) as a function of CO pressure [according to Egs. (1) and
(2) with the rate constants from Ref. [1]]. Pointers indicate a
hysteresis loop. The solid lines show a stepwise transition cor-
responding to the equistablity criterion [Eq. (3)].

chemical wave is positive, v >0, the low-rate regime is
stable, while the reactive regime is metastable. If v <0,
the situation is the reverse. Thus equistablity of the two
kinetic phases occurs only for v =0.

A chemical wave, realizing the transition from the
metastable kinetic phase to the stable state and moving at
a velocity v, is given by a special solution, ©=0O(§) with
§=x —ut, to the diffusion equation for CO molecules (ox-
ygen diffusion is negligible compared to CO diffusion),

30 /9t=D3%0 /3x*+ W (0) ,

where © is the CO coverage (we omit here the subscript
CO), D the CO diffusion coefficient, and W(©) the right-
hand part of Eq. (1) [the oxygen coverage is assumed to
be given by the steady-state solution of Eq. (2)]. The
well-known relationship between v and ©(£) is as follows
[1,3,4]:

b= f:’W(e)de /J " @eagiax

where ©, and ©O; are the steady-state solution to Eq. (1).
Accordingly, the equistability criterion (v =0) can be
written as

e
[.’wede=o. 3)
91

A metastable kinetic phase is unstable only with
respect to sufficiently strong perturbations. If a large nu-
cleus of stable phase is created inside a metastable
domain, this nucleus starts to grow and then initiates
chemical waves. The radius of a critical nucleus that can
grow can be estimated by analyzing the front propagation
in polar coordinates. In this case, the change in the front
velocity due to a finite value of the front radius R is given
by [1,3,4]

v(R)=v—D/R , (4)

where v is the front velocity for a linear interface (i.e., for
R — ). For a critical nucleus, v(R) is equal to zero,
and accordingly

R, ~D/v . (5)

For CO oxidation on Pt, we have v~(DP)!/?2 and
R_.~(D/P)!"? where P is the reactant pressure [1,3].

If the system under consideration is initially in the
metastable state, the nucleation and growth of islands of
the stable kinetic phase will result in the transition to the
stable state. Our goal is to evaluate the rate of this tran-
sition, assuming that (i) the surface is perfect (i.e., any de-
fects are absent), and (ii) nucleation is connected with
fluctuations in the arrangement of adsorbed particles due
to surface diffusion (a similar problem for diffusionless
first-order kinetic phase transitions has recently been dis-
cussed in Refs. [5,6]).

To simplify our analysis, we will characterize the nu-
clei of the stable phase only by their radius R. The nu-
cleus radius is a fluctuating value. On average, the evolu-
tion of R can be approximated as [cf. Eq. (4)]

—-D/R, R<R, 6)

(dR/d1)=v(R)=|, Rsg_ . 1)

In the framework of this approximation, all the nuclei
passing through the critical radius grow with the velocity
v. On the other hand, the subcritical nuclei are dissolved
on average. By analogy with the kinetics of thermo-
dynamic first-order phase transitions [7], we will employ
the Fokker-Planck equation for describing the time
dependence of the radius distribution f (R) of the subcrit-
ical nuclei

df /0t=—0J /OR , (8)
where
J=—Bof/0R+ Af 9)

is the flux in the “radius space.” The coefficient 4 in Eq.
(9) is directly connected with {(dR /dt ), i.e. [7],

A=v(R). (10)

The relationship between A4 and B can be derived taking
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into account that the flux, given by Eq. (9), should be
equal to zero for the “equilibrium” distribution of nuclei
fo(R) in the metastable state. The latter distribution can
be constructed assuming the adsorbed particles in the
metastable state to be located at random. If, for example,
the metastable state is on the line between points B and C
and the stable state is on the line between points E and F
[Fig. 1(a)], then the CO coverage is low in the metastable
and high in the stable state, respectively. In this case, it
is reasonable to identify the nuclei of the stable phase in-
troduced above phenomenologically with the CO “per-
colation” clusters (by definition, all the CO molecules
within one cluster are connected to each other by
nearest-neighbor links). This idea looks reasonable even
provided that the arrangement of adsorbed particles in
the critical nuclei is not necessarily “compact.”

If s is the number of CO molecules in a given cluster,
the cluster radius can be defined in the case of simple lat-
tices via the relationship

s=mR?/S, , (11)

where S is the area of the elementary cell. From the site
percolation theory [8,9], the number of large clusters is
known to be given by

n,~Qs 'exp(—Bs) . (12)

The parameter S in this equation depends on coverage.
In particular,

~ —In(AO) (13)

at low coverages, and f—0 at ©—06,, where O, is the
percolation threshold. The parameters A and O, are
dependent on the type of lattice. For triangular, square,
and honeycomb lattices, A=5.19, 4.06, and 3.04 [8], and
6,.=0.5, 0.593, and 0.696 [9], respectively. The parame-
ter Q in Eq. (12) can be estimated from the normalization
condition

> sn,=ON, , (14)

where N is the number of sites per unit area. Substitut-
ing expression (12) into Eq. (14) yields

Q~BON, . (15)

Employing Egs. (11) and (12), we obtain the following
expression for the “equilibrium” distribution of nuclei in
the metastable state:

fo(R)=(2Q /R)exp(—mBR?*/S,) . (16)

Then, the relationship between the coefficients 4 and B
can be derived by substituting expression (16) into Eq. (9),
differentiating only the exponent, and setting J =0.
After these steps, we have

B=—AS,/27BR ,
or, employing Eq. (10) for 4 and Eq. (6) for v(R),
B =DS,/2mBR? . (17)

The radius distribution of the subcritical nuclei can be

represented as
f(R)=x(R)fy(R), (18)

where the function y(R) should be chosen so that the flux
in the radius space given by Eq. (9) is constant (this re-
quirement corresponds to the steady-state approximation
for the nucleation kinetics [7]). In addition, we can em-
ploy the following boundary conditions:

1 at R—0 (19)
X(R)=10 at RR,, . 20)

Equation (19) guarantees that f(R) is close to f(R) at
small R. Condition (20) corresponds to the assumption
that all the nuclei passing through the critical radius
grow with the velocity v [Eq. (7)] and do not decay back.
Substituting expression (18) into Eq. (9) yields

dx/dR=—J/Bf, .

Integrating this equation with condition (20), we get
RC
=J 1/Bfy)dR .
X(R)=J [ “(1/Bf)

The second boundary condition [Eq. (19)] is fulfilled if

RC
J=1/ [ “(1/Bfo)dR .

Inserting into this equation expressions (16) and (17) and
integrating, we obtain for the flux in the radius space

J=~(2QD /R¥)exp(—7BRZ/S,) ,
or, taking into account Eq. (15),
J=~(2BON,D /R exp(—mBRZ/S,) . @1

In the framework of the steady-state approximation,
the flux in the radius space is equal to the nucleation rate.
Thus Eq. (21) gives us the nucleation rate. The fraction
of the surface covered by the stable phase, 7, is then
defined by the well-known Avrami equation [10]

P=1—exp(—mJv?t?/3) . (22)

Accordingly, the time characterizing the growth process
is

r=1/(JvH)?
or, taking into account Eq. (21),

~(R2?/BON,Dv?)'Pexp(mBR?/3S,) . (23)

The equations above have been derived for describing
the transition from the metastable state on line BC to the
stable state on line EF [Fig. 1(a)]. In this case, the CO
coverage O is low in the metastable and high in the stable
phase. If one analyzes the transition from line DE to line
AB, the situation is the opposite, i.e., the CO coverage is
high in the metastable and low in the stable phase. In the
latter case, the nuclei of the stable phase will be formed
not by CO molecules but by the sites which are free of
CO. Accordingly, applying Egs. (21)-(23), one should re-
place © by (1—0O).
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Finally, it is of interest to make some elementary esti-
mates. At P~10"7 bar and T~500 K, we have D =10~
cm?/s, v=10"2 cm/s, and R_,~10"* cm [1]. In addi-
tion, Ny~10'"> cm™2 and S;=1/Ny,=~10"" cm? With
these values, the preexponential factor in Eq. (23) is about
1073 s (the parameters B and © in the preexponential fac-
tor can be neglected). For the transition from the meta-
stable state on line BC to the stable state on line EF [Fig.
1(a)], the CO coverage is very low in the metastable
phase, and accordingly 8> 1. In this case, the exponen-
tial factor in Eq. (23) is so large that the spontaneous nu-
cleation on the flat surface is in fact completely negligi-

ble. For the transition from line DE to line AB, the pa-
rameter 3 may be lower, but anyway this parameter is not
able to compensate the large value of the ratio mR2/3S.
Thus, for CO oxidation on Pt at low pressures, the nu-
cleation seems to occur only on defect sites, e.g., on steps.
With increasing pressure, the critical radius decreases,
R,.~1/P'? [1,3], and the situation for spontaneous nu-
cleation on the perfect sites of the surface may be more
favorable.

The author thanks Professor B. Kasemo for useful dis-
cussions.
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